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Yeast glycoproteins are representative of low-complexity sequences, those sequences rich in a few types of
amino acids. Low-complexity protein sequences comprise more than 10% of the proteome but are poorly
aligned by existing methods. Under default conditions, BLAST and FASTA use the scoring matrix BLOSUM62,
which is optimized for sequences with diverse amino acid compositions. Because low-complexity sequences are
rich in a few amino acids, these tools tend to align the most common residues in nonhomologous positions,
thereby generating anomalously high scores, deviations from the expected extreme value distribution, and
small e values. This anomalous scoring prevents BLOSUM62-based BLAST and FASTA from identifying
correct homologs for proteins with low-complexity sequences, including Saccharomyces cerevisiae wall proteins.
We have devised and empirically tested scoring matrices that compensate for the overrepresentation of some amino
acids in any query sequence in different ways. These matrices were tested for sensitivity in finding true homologs,
discrimination against nonhomologous and random sequences, conformance to the extreme value distribution,
and accuracy of e values. Of the tested matrices, the two best matrices (called E and gtQ) gave reliable
alignments in BLAST and FASTA searches, identified a consistent set of paralogs of the yeast cell wall test set
proteins, and improved the consistency of secondary structure predictions for cell wall proteins.

The ability to accurately align protein sequences is central to
inferences about the evolutionary history of genes and there-
fore to the evolution of organelles and organisms as well. In
addition, homology modeling and even functional inference
through the annotation of similar sequences depends on align-
ment accuracy. For low-complexity sequences such as fungal
cell wall proteins, errors caused by anomalous high scores for
nonhomologous sequences will inevitably lead to erroneous
inferences for evolution, structure, and function.

Low-complexity sequences in the proteome. Proteins with
low-complexity sequences are common and functionally im-
portant but are not well aligned by existing procedures. These
proteins are rich in a few amino acids and thus have overall
composition significantly different from the “average” compo-
sitions seen in the multiple alignments used to construct the
BLOSUM alignment scoring matrices and for the BLAST sta-
tistical analyses (16). About 10% of known protein sequences
have overall low complexity; eukaryotic genomes and some
bacterial pathogens contain even higher percentages of low-
complexity sequences (24, 32). The NCBI nonredundant data-
base currently contains approximately 3.2 million sequences.
Thus, there are about 320,000 low-complexity sequences that
cannot be accurately compared or aligned and therefore can-
not be compared on any large scale, either functionally or
evolutionarily. In addition, there are low-complexity segments
in half of all proteins (32). These segments also cannot be

reliably aligned and so are currently “masked” by SEG or
similar procedures and then ignored by the alignment tools
(29, 34). In globular proteins, low-complexity sequences tend
to occur as loops within and between globular domains (19,
21), regions often important for protein function. Recent pa-
pers have highlighted the need to solve this problem, and a
logical solution is the modification of scoring matrices to com-
pensate for the composition of the query sequence (6, 36, 37).

Fungal cell wall proteins are representative of low-complex-
ity sequences; they average 35% Ser and Thr residues, with
some 100-residue segments composed almost exclusively of
these two amino acids (11, 20, 28). As a result, wall proteins are
normally aligned only after SEG filtering to remove the low-
complexity segments, so sequence comparisons cannot be
made for the low-complexity regions. If there were rapid
search and alignment protocols that could compare such com-
positionally biased segments, then both evolutionary and struc-
tural comparisons could be attempted.

The major alignment problem for low-complexity sequences
is called low-complexity corruption (31). Intuitively, low-com-
plexity corruption results from the alignment of high-frequency
residues. In fungal cell wall proteins, the problem is most
egregious for Ser, Thr, Pro, Ala, and Val. This phenomenon
gives high alignment scores and low e values to nonhomolo-
gous pairs of protein segments (high-scoring pairs [HSPs]). For
example, alignments of Ser with Ser and Thr with Thr in cell
wall proteins give alignment scores of �4 and �5, respectively,
in BLOSUM62, the standard scoring matrix. Because the res-
idue alignment scores are summed over the segments being
aligned, the many pairs of aligned Ser and Thr residues will
give a high summed total alignment score, even if the fre-
quently occurring amino acids are randomly distributed in the
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sequences. Indeed, in searches using low-complexity proteins
as the query sequence, there are enough abnormally high-
scoring pairs that the distribution of all scores is skewed by the
overrepresentation of high scores (Fig. 1B). The skew means
that the score distribution deviates from the expected extreme
value distribution, and e values calculated from the scores are
invalid because the underlying distribution is different. For
low-complexity sequences, this combination of anomalous high
scores and small e values appears with any search and align-
ment tool that uses BLOSUM matrices, including BLAST,
FASTA, and the initial alignments in PSI-BLAST. Thus, if the
alignment scores for frequently occurring amino acids were
reduced appropriately, alignments of these residues would not
artificially inflate the scores to generate HSPs from sequences
with similar amino acid compositions but dissimilar sequences.

Matrices other than BLOSUM have been shown to be more
appropriate for sequences of nonaverage composition. For ex-
ample, to make discriminatory matrices and predict hydropho-
bic and transmembrane segments in proteins, the specialized
matrices PHAT and SLIM use the background frequencies
present in transmembrane alignments instead of standard amino
acid frequencies (23, 25). Similarly, position-specific scoring ma-

trices (PSSM) are used to predict coiled-coil structures and in all
iterative searches after the first in PSI-BLAST (5, 7, 22). The
effectiveness of these specialized matrices on their intended tar-
gets attests to the fact that adjustment of matrices to account for
amino acid composition in the query and target sequences can be
highly discriminating and sensitive.

Goals and evaluation criteria. To improve the alignment of
low-complexity sequences, we have developed and tested mod-
ifications to produce scoring matrices that are adjusted for the
composition of each query. The goals are to prevent align-
ments of sequences that are compositionally similar but non-
homologous and to generate statistically significant, homology-
driven alignments of low-complexity segments necessary for
structural and evolutionary studies of the low-complexity por-
tion of the proteome.

Each matrix modification method was evaluated based on
the following criteria, as summarized in Table 1: sensitivity (the
ability to find a high number of homologs) for both low-com-
plexity and high-complexity query sequences, discrimination
against randomized sequences and nonhomologous proteins
with similar amino acid compositions, conformance with the
expected extreme value distribution of alignment scores that
should be generated during the search, accuracy of derived e
values, and computational efficiency. The results demonstrated
that two of the composition-based matrices are powerful
adaptations for BLAST and FASTA searches and alignments
for low-complexity Saccharomyces cerevisiae glycoprotein se-
quences.

MATERIALS AND METHODS

Summary of methods. We searched for sequences similar to each of 10 yeast
cell wall proteins. These proteins have low-complexity regions that constitute 40
to 100% of the open reading frame (ORF) length. For each query sequence, the
amino acid frequencies were determined, and the scoring matrix was altered by
the rules described below. The modified scoring matrices (Table 2) were rescaled
to the same � and � statistical parameters as the standard scoring matrix
(BLOSUM62) so that the reported e values were distributed similarly to those
from BLOSUM62-based searches of high-complexity sequences (see Table S1 in
the supplemental material). A similar rescaling strategy is used in PSI-BLAST
(5). (Note that additional mathematical definitions and relationships are de-
scribed in the supplemental material.) The query sequence was then used as the
query in BLAST or FASTA. HSPs were ranked by e values.

FASTA calculates e values for each search by comparison to scores generated
by randomized query sequences. Therefore, the e values reported for FASTA
searches are appropriate for each query sequence and scoring matrix.

Matrix modification Q. One way to change scoring matrices is to adjust each
scoring element, Sij, to compensate for the probability of a match at random. This
approach keeps the target frequencies, Qij, equal to the standard target frequen-
cies, in the hope that this will reduce random alignments of frequently appearing
amino acids. Each new matrix element, S*ij, can be calculated as follows:

Pi Pj exp ��Sij� � P*i Pj exp ��S*ij� � Qij (1)

where Pi is the probability of the occurrence of an individual amino acid, i, and
P*i is the probability of amino acid i in the query sequence, and the new score is
calculated from Sij and Pj. Pj and Qij are taken to be unchanged, so one com-
pensates for the low complexity in the query but not in the database sequence. �
predicts the width of the extreme value score distribution. In essence, each score,
S*ij, is reduced or raised to compensate for the degree to which the frequency for
i in the query sequence differs from the frequency for i in the standard ratios used
in BLOSUM62 (16, 17). The new matrix will have the same target frequencies in
the context of the amino acid composition of the query sequence that the original
matrix had in the context of standard amino acid composition. Because target
frequencies, Qij, are kept constant, equation 1 guarantees that the � of the matrix
in the context of the amino acid composition of the query sequence should not
change. BLAST, however, requires that the matrix entries be integers, so � does

FIG. 1. Alignments for best-scoring HSPs (e � 10�3) for Aga1p,
Muc1p, and Fig2p. The first 50 aligned residues in each alignment are
shown, and identities are shown between the query sequence and the
similar sequence. Residues S and T in boldface type are overrepre-
sented in the query sequences. (A) Muc1p/Bsc1p alignment reported
in all searches. e values for the alignments are shown on the left. (B to
D) Other highest-scoring alignments and e values for BLAST searches
with each listed matrix. There were no other HSPs with e values of
�10�3 for the BLAST-E searches.
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change after rounding of the score. For each search, �* can be set to the � of the
original matrix by multiplying each score by the ratio of the �* of the unscaled
matrix to the � of original matrix, as described previously (31). We call this matrix
modification Q, for target frequency.

Matrix modification E. The problem of complexity corruption can be thought
of in another manner. The expected score, E, of a given matrix is as follows:

E � �Pi Pj Sij (2)

The BLAST statistical model requires that value E in equation 2 be negative
(18). If the probability of amino acid i in the query sequence is larger than the
standard probability for i used in the database or score distribution simulation,
the expected score for the ij pair will unduly contribute to the total score of
alignments and will select for randomly aligned segments that have amino acid
compositions similar to the query. Once again, we can adjust the score of the
matrix to compensate for the fluctuation in the amino acid composition of a
query from the standard amino acid composition and yet retain the intrinsic
property (i.e., expected score, E) of the matrix in the context of the query’s amino
acid composition as follows:

Pi Pj Sij � P*i Pj S*ij (3)

We call this matrix modification E, for expected score. This modification signif-
icantly changes the value of �, which is then reset according to equation 1.

Fig. S1 in the supplemental material shows the impact of matrix modifications
on positive and negative scores relative to the ratio between the probability that
amino acid i occurs in the query and the standard Robinson and Robinson
probability for that amino acid (3). These matrix modifications decrease positive
scores for frequent amino acid pairs but increase negative ones. Matrix modifi-
cation E increases the negative scores for frequent pairs, but such a negative
score never becomes positive nor does a positive score ever become negative. In
contrast, Q modifications can convert a negative score into a positive one or vice
versa. As a result, the two types of matrix modifications produced distinct total
scores and alignments.

“gt” and “32” modifications. A “greater-than” (gt) matrix modification was
also implemented. Under this modification, scores are reduced only if a residue
is more frequent in the query sequence than in “standard” frequencies calculated
according to Robinson and Robinson frequencies (i.e., P*i/Pi 	 1) (3). When
applied to matrix modification E or to matrix modification Q, this produces
scoring matrices gtE and gtQ, respectively.

PSI-BLAST uses BLAST-PGP with a 32-fold scale-up of BLOSUM62 to
enhance sensitivity during the first round of comparisons. We have used the same
scaling factor to augment the BLOSUM62 matrix before adjusting for amino
acid composition deviation. This generates the gtE32 and gtQ32 matrices; gap
costs are also scaled up (Table 2). The gtE32 and gtQ32 matrix modifications
were implemented for FASTA only.

Implementation. As a test of the effects of composition-based matrix modifi-
cations, we carried out searches on two sets of proteins. The first was a test to find
homologs of low-complexity yeast cell wall proteins in a combined database of
the yeast proteome and three complete sets of randomized yeast ORF pseudo-
sequences. Randomizations of the sequences were global (the entire sequence
randomized for each ORF) or local. For local randomizations, the sequence was
randomized within contiguous windows of 12 residues. This window length cor-
responds to that of the SEG filter and maintains the local entropy of the
sequences. For searches with cell wall proteins as queries, HSPs with authentic
yeast ORFs were counted as “true” hits, and HSPs with randomized sequences
were counted as “false.” This designation favors nondiscriminating matrices such
as BLOSUM62, because some nonhomologous sequences were counted as
“true” hits for the tests shown in Fig. 2. Inspection of alignments (Fig. 1) and
comparison of annotations (see Table 4) showed that these nonhomologous
“true” hits were not reported in searches with gtQ and E matrices. The other
search set was the Aravind data set, which contains 103 domain-specific query
sequences and a total of 1,005 true positives in the yeast proteome, curated as
described previously by Schaffer et al. (31). We used those definitions of “true”
and “false” hits.

To test the sensitivity and selectivity of pairwise search algorithms for high-
complexity sequences with the modified scoring matrices, stand-alone versions of

TABLE 1. Validation tests

Test purpose Methods and/or searches
(matrices)

Data set

Results
Query Database

(positive control)
Database

(negative control)

Sensitivity/discrimination
(low complexity)

Sensitivity curves, BLAST and
FASTA (11 modified and
unmodified matrices)

10 cell wall proteins Yeast proteome Locally randomized yeast
proteome (pseudoprotein
sequences)

Fig. 2

Application in homology
searching

Transitive closure, BLAST
and FASTA (11 modified
and unmodified matrices)

10 cell wall proteins GO and manually
annotated cell wall
proteins in yeast
proteome

Non-cell wall proteins
according to GO and
manual annotations

Fig. 3, Table 4

Sensitivity/discrimination
(high complexity)

Sensitivity curves, BLAST and
FASTA (11 modified and
unmodified matrices)

Aravind (103 query
sequences)

Aravind (true hits) Aravind (false hits) Table 5

Conformance to extreme
value distribution

Distribution of scores, BLAST
and FASTA with B, PGP
gtQ, and E

Flo1p fragment,
random sequences
of low and high
complexity

None 10,000 globally and locally
random sequences with
low and high complexity

Table S1;
chi-square
tests, � and
� estimates

Distribution of scores (11
modified and unmodified
matrices)

Aravind (103 query
sequences)

Homologous sequences
in yeast proteome

Nonhomologous sequences
in yeast proteome

Fig. S2

Accuracy of false-hit
e values

Mean and best e values 10 cell wall proteins;
Aravind

None Nonhomologous sequences
in yeast proteome

Table S2

TABLE 2. Search methods and modified scoring matrices

Search
tool Matrix Description

BLAST B Standard BLOSUM62 (SEG filter not used)
BF Standard BLOSUM62 with SEG filtering
PGP BLOSUM62 with 32-fold expanded scaling and

32-fold gap costs; score distributions adjusted
to reflect the composition of the query

E Adjust scores to maintain expected score equal
Q Adjust scores to maintain target frequency equal
gtE BLOSUM62 with E modifications for

overrepresented amino acids
gtQ BLOSUM62 with Q modifications for

overrepresented amino acids
FASTA B Standard BLOSUM62 (SEG filter not used)

BF Standard BLOSUM62 with SEG filtering
E Adjust scores to maintain expected score equal
Q Adjust scores to maintain target frequency equal
gtE BLOSUM62 with E modifications for

overrepresented amino acids
gtQ BLOSUM62 with Q modifications for

overrepresented amino acids
gtE32 32-fold gtE modifications and 32-fold gap costs
gtQ32 32-fold gtQ modifications and 32-fold gap costs
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BLAST (version 2.2.2) and FASTA (version 3) were used. As recommended
previously (2, 16, 27), gap costs of 9 to 13 were used with BLAST, lower costs, 5
to 9, were used for FASTA searches, and the gap extension cost was set at 1.
Each search used one of the scoring matrices (described above) based upon
the amino acid frequencies in the individual query sequence. The notations
that describe each type of search with each type of matrix are summarized in
Table 2.

All BLAST searches were implemented using the command-line executable
“blastall” with the BLAST-x matrices or the command-line executable “blastpgp”
with the BLAST-PGP matrix and the composition-based statistics flag on
“(-t T).” Both command-line executables produce gapped pairwise alignments,
but BLASTPGP uses composition-based statistics to assess significance and can
be used to generate PSSM from first-round hits. The PSSM is used to score the
second round of searches in PSI-BLAST. To preserve comparability, blastpgp
searches were relegated to one round “(-j 1).” The FASTA searches were
conducted with the command line-executable “fasta34.” Command line options
were default options unless specified otherwise. All matrix modification searches
were PERL and BASH shell scripts executed on a Sun Microsystems Sun-
Blade100 workstation running Debian GNU Linux. Searches were performed
without SEG filtering unless specifically designated and were repeated for sev-
eral different gap values.

Transitive closure tests. We tested whether the similarity sets were closed for
yeast cell wall proteins. These tests compared output from BLAST-PGP,
FASTA-B, and the four matrix modifications that are sufficiently sensitive and
discriminating to support searches with low-complexity sequences: E, gtQ,
gtQ32, and gtE32. These searches used the 10 yeast cell wall proteins as query
sequences to search the yeast protein database (retrieved from the NCBI).
Searches were done with the gap costs shown in Fig. 2. HSPs with e values less
than the specified cutoff for distinct new proteins in each round became the
query set for the next round, still against the same database. This process
continued until no new, distinct proteins with e values below the specified cutoff
were obtained (14, 35).

Comparisons of the transitive closure sets were performed using a Java web
application and other Java codes. The WAR file for the web application is
available from the authors. The glycosylphosphatidylinositol (GPI) protein set
was taken from data described previously (8, 11). Using the Gene Ontology (GO)
database terms “cell wall (sensu fungi)” and “cell wall organization and biogen-
esis,” the Gene Ontology sets were obtained from the Saccharomyces Genome
Database website (http://www.yeastgenome.org/). We curated the “cell wall pro-
tein,” “non-cell wall protein,” “wall biogenesis,” and “unknown or ambiguous”
classifications shown in Table 4.

Availability. The PERL and shell scripts, customized databases, and supple-
mental sensitivity curves described in this paper can be obtained from the
authors.

RESULTS

General approach. Two types of score adjustments, with
several variations of each, were designed and evaluated in tests
using a variety of query sequences and databases summarized
in Table 1. The score adjustments and queries are described
below.

Score changes for frequently occurring amino acids. The E
and Q matrix modification methods reduce the alignment
score, Sij, for aligned residues i and j for amino acids occurring
at a high frequency in a query sequence but preserve the net
negative value for the matrix that is required for accurate
statistical analyses of the alignments (3). Each modification
method yields a different scoring matrix for each query se-
quence. Each modification method and its variants compen-
sate in different ways for the deviation from the standard
Robinson and Robinson frequencies used to derive the gapped
BLAST statistical parameters for BLOSUM62, as summarized
in Materials and Methods (3, 18). The E method keeps the
expected score of the matrix constant, while the Q method
keeps the target frequencies, Qij, constant, where Qij is the
expected frequency that a residue, i, in one sequence is re-
placed by j in randomly aligned sequences (18). These frequen-
cies are determined in a set of standard alignments using
BLOSUM62.

All matrix modifications are summarized in Table 2 and are
described in detail in Materials and Methods. Throughout, we
append suffixes to indicate which modifications were applied to
a search method (Table 2). For example, A “BLAST-BF”
search indicates that unmodified BLOSUM62 (“B”) was used

FIG. 2. Sensitivity curves for BLAST (B) and FASTA (F) with different scoring matrices (Mat). Matrix B is the traditional BLOSUM62 matrix;
E, Q, gtE, gtQ, gtE32, and gtQ32 are described in the text. (A) S. cerevisiae cell wall proteins searched against the yeast proteome and three locally
randomized copies of the yeast proteome. Search output was binned into groups of hits by e value (10�130, 10�8, 5 
 10�8, 10�7, 10�5, 5 
 10�2,
10�1, 5 
 10�1, 1, 5, and 10). True positives (yeast ORFs) and false positives (locally randomized yeast pseudoprotein sequences) were counted
and plotted for each group of hits. “Gap” is the gap cost (cost to open and cost to extend). For PGP, gtE32, and gtQ32 modifications, the listed
gap values were multiplied by 32 before alignments were evaluated. The designated gap penalties gave maximal discrimination for each tested
matrix.
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with SEG filtering (“F”). FASTA-gtE32 indicates that we car-
ried out a FASTA search with three modifications to the
BLOSUM62 matrix: E, gt, and 32. We adopt the BLAST
filtering criterion as a working definition for a low-complexity
sequence, that is, one with Shannon entropy less than 2.2 over
a window of at least 12 amino acid residues (5, 34).

Query sets. The cell wall query set for most searches with
low-complexity queries was a group of 10 cell wall GPI class
mannoproteins (8, 11, 20): Cwp2p, Sag1p, Ssr1p, Tip1p, Sed1p,
Tir1p, Flo11p, Aga1p, Flo1p, and Fig2p, with lengths of 92,
650, 238, 210, 338, 254, 1,367, 725, 1,537, and 1,609 residues,
respectively (8, 11). These sequences are representative of
GPI-anchored fungal cell wall proteins and include six unique
genes, two members of the FLO gene family, and two members
of the TIR/TIP family. These and other cell wall proteins are
mosaics of high-complexity and low-complexity segments (8,
10, 11, 20).

Tests with high-complexity queries used a standard data set
of 103 yeast signal transduction proteins as queries in searches
of the S. cerevisiae proteome and three copies of the proteome
with the ORF sequences randomized (31).

Effects of matrix modifications on searches with low-com-
plexity query sequences. The problem of low-complexity cor-
ruption is illustrated in Fig. 1. BLOSUM62-based BLAST or
FASTA searches with yeast cell wall proteins as queries iden-
tified homologs with highly similar sequences (Fig. 1A) but
also returned HSPs with randomized sequences and nonho-
mologous proteins, even when score statistics were adjusted by
PGP or when low-complexity regions were masked with SEG
(Fig. 1B to D). These alignments were based on high frequen-
cies of matched Ser and Thr residues and therefore identified
many nonhomologous sequences as highly similar, a known
consequence of low-complexity corruption (31, 34). In the
BLAST-B search, the highest-scoring match to Muc1p was a
random pseudoprotein segment derived from Dan4p. Simi-
larly, the three highest-scoring matches to Fig2p (e � 10�62)
were randomized versions of Muc1p. Like the BLAST-
BLOSUM62 searches, BLAST-BF and BLAST-PGP, which
uses composition-based statistical analyses with BLOSUM62,
gave matches in which 	80% of the identities were Ser or Thr
(Fig. 1C and D). Other residues were seldom aligned. PGP
also identified a large number of best hits with similar compo-
sitions but unlikely homology: among the highest-scoring
matches for Aga1p was Snt1p, a histone deacetylase subunit,
and for Muc1p, the third highest-scoring match was to the
Sec31p subunit of the endoplasmic reticulum protein translo-
cation pore. These proteins are unlikely to be homologous on
the basis of functional analogy, cellular localization, or align-
ment of conserved sequence motifs. In addition, BLAST-B,
PGP, and BF searches identified many randomized sequences
as HSPs with an e value of �10�3.

Alignments were greatly improved after matrix scores were
adjusted to reflect the composition of the query sequences. Of
the matrix variants listed in Table 2, the E and gtQ variations
with BLAST or FASTA, as well as gtQ32 with FASTA, gave
more specific alignments. (Our website, http://diverge.hunter
.cuny.edu:8080/modmat, has automated, composition-based
matrix modifications and search capability for any query se-
quence.) E matrices were highly specific; they required regions
of extensive identity to achieve HSPs with significant e values.

The Muc1p/Bsc1p homology (Fig. 1A) was the only significant
hit for any of the three query proteins illustrated in Fig. 1. gtQ
matrices showed more high-quality HSPs, a result of acquisi-
tion of significant scores over even relatively short but highly
similar segments (Fig. 1E). All of the significant HSPs were to
proteins that are also localized to cell walls. Note that with gtQ,
the best match for Aga1p was in a segment that was aligned
with a randomized Muc1p pseudoprotein in the best match of
the BLOSUM62-based search (Fig. 1B).

Thus, the alignments showed that searches with BLOSUM62
matrices were subject to low-complexity corruption, even with
PGP statistics or SEG filtering. These findings were confirmed
in the structural comparisons and the sensitivity and transitive
closure tests described below. In contrast, gtQ matrices were
highly sensitive, reaching significant e values in relatively short
segments of both low-complexity and high-complexity compo-
sitions. The E matrices were highly discriminatory and iden-
tified only long HSPs with a high likelihood of homology.

Structural correlations and matrix modification. Align-
ments are especially important in structural searches. There
are few structures known for low-complexity proteins, and in-
deed, structures for low-complexity sequences are severely un-
derrepresented in the Protein Databank (21). Therefore, ap-
parent matches to nonhomologous sequences may be used
mistakenly as the basis for alignment and modeling. Use of gtQ
and E matrices can assure better alignments and more accu-
rate structural predictions.

If aligned regions are homologous, they should have similar
secondary structures (15). We tested the composition-modified
matrices as predictors of concordant secondary structure pre-
dictions for pairs of HSPs with e values of �10�3. The cell wall
query proteins were used to search the S. cerevisiae genome
database. Each aligned sequence segment was used as the
input for GOR IV, a secondary structure predictor that does
not depend on BLOSUM62-based alignment to homologous
sequences (13). The GOR IV secondary structure predictions
of �-helix or �-sheet were compared (Table 3). The gtQ ma-
trices gave the highest degree of concordance, over 80%, fol-
lowed by E and B matrices. However, the concordance values
with PGP had high variance due to the inclusion of nonho-
mologous HSPs (Fig. 1). We repeated the test for the subset of

TABLE 3. Concordance of GOR IV secondary structure
predictions for cell wall-related aligned sequencesa

Matrix

10�3 � e 10�5 � e � 10�30

No. of aligned
residuesb

Concordance
H � E (%)c

No. of aligned
residuesb

Concordance
H � E (%)c

E 2,845 80 2,763 81
gtQ 3,010 82 650 65
B 3,937 74 1,812 51
PGP 6,245 63 243 58

a The cell wall query set was used for BLAST searches of the S. cerevisiae
genome. GOR IV was used to predict the conformation of all sequences in all
HSPs within the designated range of e values. Each residue predicted to be in
�-helix (H) or �-sheet (E) conformation was compared to its aligned partner and
scored as concordant if the conformation predictions were identical.

b Number of aligned residues predicted to be in �-helix (H) or �-sheet (E)
conformation in all HSPs with the designated e values.

c Percentage of instances where both members of an aligned pair of residues
are predicted to be in the same �-helical or �-sheet conformation.
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HSPs with 10�5 � e � 10�30, values for the alignments most
likely to be relevant for such predictions. For these HSPs, E
and gtQ matrices outperformed BLOSUM62-based matrices.
Again, PGP searches had poor concordance and the greatest
standard deviation (not shown), indicating variation in the
quality of the matches, as expected in situations where HSPs
include nonhomologous matches. Thus, the use of modified
matrices significantly improved the reliability of secondary
structure predictions.

Sensitivity and discrimination. Sensitivity curves are a stan-
dard way to illustrate the effectiveness of search strategies (31).
These graphs (Fig. 2) illustrate sensitivity (number of ho-
mologs identified as HSPs) as horizontal displacement and
discrimination (number of false hits identified as HSPs) as
vertical displacement. Thus, good performance is indicated by
a curve that has a long horizontal component with minimal
verticality apparent only at the right-hand end of the curve.
Previous work has defined false hits either as randomized se-
quences of composition similar to that of the true hits (3, 31)
or as proteins known to be nonhomologous (31). To test the
composition-modified matrices for discrimination against non-
homologous, low-complexity sequences similar to the query
sequences, we searched the cell wall protein query set against
the S. cerevisiae genome combined with the locally randomized
pseudoprotein sequences described in Materials and Methods.

Figure 2 shows sensitivity plots for the cell wall protein query
set against the S. cerevisiae proteome and three locally ran-
domized copies. All tested matrix modification methods per-
formed better than BLAST with B or BF and FASTA-B, which
were unable to discriminate between authentic and random-
ized sequences. BLAST-PGP, which uses composition-based
statistics with BLOSUM62, found 25 true hits (including the 10
query sequences themselves) at e values below that of the first
false hit. Among the modified matrix searches, BLAST-E was
highly discriminatory (it found very few false hits even with
large e values). The gtQ matrices showed by far the best sen-
sitivity (105 true hits with lower e values than the best-scoring
false hit). Thus, FASTA-gtQ32 identified the 10 query se-
quences and 95 paralogs of the query proteins at e values that
excluded false hits, whereas BLAST-PGP identified only 15
paralogs.

Transitive closure tests. We used transitive closure as an
empirical test of the usefulness of the composition-based ma-
trix modifications. The 10 cell wall proteins were used as query
sequences in BLAST and FASTA searches. Each query was
used with different matrices derived from its own composition.
The ORFs corresponding to all hits with e values of �10�3

were used as the query sequences in the next round of
searches, again with scoring matrices derived from each spe-
cific composition. This procedure was repeated until no new
HSPs were identified. If a search method discriminates be-
tween similar and nonsimilar sequences, transitive closure
should terminate after a relatively small set of sequences is
identified. On the other hand, low-complexity corruption or
other artifacts will result in frequent identification of nonho-
mologous proteins with low e values. The consequences will
include a larger number of search rounds to achieve closure,
and the significant “hits” will potentially include much of the
proteome.

As expected, BLAST-B failed to achieve closure on the

low-complexity query sequences, even with a cutoff e value of
�10�9. With a standard cutoff e value of �10�3, there were
many new hits in each round, with a total of 863 sequences
after five rounds (15% of the yeast proteome) (Fig. 3 and
Table 4). BLAST-BF also failed to close. The other methods
achieved closure in 3 to 10 rounds (Table 4). There were 192
different ORFs identified in one or more of the searches with
composition-modified matrices. Of these, 47 ORFs were iden-
tified in all searches, with 1 more ORF identified by five of the
six modified matrix methods. Thus, there was a core of 48 hits
that were most similar to the query sequences.

BLAST-PGP was the most sensitive method that closed, but
it did not discriminate against nonhomologous sequences. The
BLAST-PGP test identified 135 hits not found in any other
search. Most of these extra hits were due to low-complexity
corruption, similar to that seen in Fig. 1 and 2. The alignments
were rich in pairings of nonhomologous Ser and Thr, and there
were multiple different alignments in the same segments of the
protein pairs with the same score. Such multiple equivalent
HSPs are typical of low-complexity corruption. Furthermore,
the vast majority of these hits were for proteins that are un-
likely to be related to cell wall proteins (Table 4).

We reasoned that the most likely homologs of the query
sequences would be other cell wall and cell surface proteins,
since their composition and domain structures are similar to
each other and substantially different from those of globular
proteins (20). Therefore, we functionally classified the hits
identified in the transitive closure tests. The 343 ORFs iden-
tified in any modified matrix search or BLAST-PGP or
FASTA-BF were labeled cell wall or not cell wall, either in
accordance with the GO database or as curated by the authors.

FIG. 3. Transitive closure trial of BLAST (B)-PGP, BLAST-E,
BLAST-gtQ, FASTA (F)-B, FASTA-E, FASTA-gtQ, FASTA-gtE32,
and FASTA-gtQ32. Iterative searches of the yeast cell wall protein
query set (10 proteins) against the Saccharomyces Genome Database
were run as described in the text. The cutoff e value was 10�3 for all
searches. The hits marked “query” are the identities to the query
sequences, which have the smallest e values in the first-round searches.
The NCBI gi accession numbers for the identified ORFs are shown in
Table S3 in the supplemental material.
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BLAST-PGP and FASTA-BF searches included many non-cell
wall proteins among the significant hits (12). In contrast,
searches with E and gtQ composition-modified matrices iden-
tified a highly similar set of ORFs, almost all of which were
classified as cell wall proteins in either BLAST or FASTA. A
complete list of hits for BLAST-PGP and composition-modi-
fied matrix searches is shown in Table S4 in the supplemental
material.

Effects of matrix modifications on searches with high-com-
plexity query sequences. To assess the effects of composition-
based matrix modification on searches with high-complexity
sequences, we also tested our methods in searches with glob-
ular (high-complexity) proteins as queries. The Aravind data
set is a set of curated signal transduction proteins within the S.
cerevisiae proteome (31). A total of 103 of these proteins were
used as queries in BLAST and FASTA searches, counting the
number of alignments with curated “true” and “false” ho-
mologs within the previously established criterion that the e
value was �10�2 (Table 5) (31). As previously reported,
BLAST with BLOSUM62 was the most sensitive method, re-
turning 46% of the known homologs at this e value (31).
Among the composition-modified matrices, searches with gtQ
performed well, with 82 to 86% of BLOSUM62’s sensitivity in
BLAST and 75% sensitivity in FASTA searches. B and gtQ
had similar levels of discrimination against false hits. Again,
the E matrices were highly discriminatory and gave no false
hits, but the searches were less sensitive. Thus, composition-
modified matrices provided moderately lower sensitivity but
similar (gtQ) or increased (E) discrimination in searches with
sequences whose composition is near the Robinson and Rob-
inson average.

Score distributions. The reliability of e values depends on
the statistical distribution of the alignment scores, which must
conform to the Gumbel extreme value distribution (18). We
tested this conformance for BLOSUM62 and the gtQ and E
modifications. Each test used a 1,000-residue segment from

Flo1p, a randomized sequence with the same composition as
the yeast cell wall query data set, and a random sequence of the
same composition as the Robinson and Robinson high-com-
plexity data set as queries. As in previous tests of searches
and matrices (3), each query was tested for Smith-Waterman
alignments (27) against four databases, each with a size of
104: high-complexity sequences randomized globally, high-
complexity sequences locally randomized, low-complexity se-
quences randomized globally, and low-complexity sequences
randomized locally. For each search, the 104 alignment scores
were binned and compared to expected scores in the extreme
value distribution with Pearson’s 2 test. The distributions of
alignment scores generated by the composition-modified
matrices, as they should be, were similar to the extreme
value distribution with a P value of �0.005. However, in

TABLE 4. Comparison of transitive closure sets

Search Matrix No. of rounds
to close

Hits GO cell wall No. of curated proteins

Type No. No. % of hits Cell wall Wall
biogenesis

Not cell
wall

Unknown or
ambiguous

BLAST B 	5 Total 863 66 8 NDa ND ND ND
BF 	8 Total 784 60 8 ND ND ND ND
PGP 7 Total 192 28 15 41 6 122 23

Uniqueb 135 4 3 0 5 122 8
E 3 Total 48 18 38 35 0 0 13

Unique 0 0 0 0 0 0 0
gtQ 4 Total 64 26 41 46 2 2 14

Unique 13 5 38 8 2 2 1
FASTA B 13 Total 397 51 13 ND ND ND ND

BF 10 Total 158 43 27 61 6 60 31
Unique 16 2 12 2 0 14 0

E 3 Total 48 18 38 35 0 0 13
Unique 0 0 0 0 0 0 0

gtQ 3 Total 51 21 41 38 0 0 13
Unique 0 0 0 0 0 0 0

gtQ32 3 Total 51 21 41 38 0 0 13
Unique 0 0 0 0 0 0 0

a ND, not determined.
b Hits were classified as unique if they were identified only in the specified search. For example, transitive closure with BLAST-PGP identified 192 homologous ORFs,

135 of which were identified only in the BLAST-PGP search, and 57 were also identified in at least one other search.

TABLE 5. Results of modified-matrix searches on the
Aravind data set

Method
No. of true
homologs

(e � 10�2)

No. of false
hits (e � 10�2)

% of BLAST-B
sensitivity

BLAST-Ba 460 3 100
BLAST-PGP 434 2 94
BLAST-BF 436 2 95
BLAST-E 231 0 50
BLAST-Q 348 1 76
BLAST-gtE 401 1 87
BLAST-gtQ 390 3 85
FASTA-B 388 0 84
FASTA-BF 398 0 86
FASTA-E 242 0 53
FASTA-Q 223 80 48
FASTA-gtE 339 1 74
FASTA-gtE32 318 0 69
FASTA-gtQ 319 0 69
FASTA-gtQ32 345 1 75

a BLAST-B identified 45.8% of the total “true” homologs.
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BLOSUM62-based searches for low-complexity sequences in
both low-complexity databases, the P value was 	0.03 to 0.07.
Thus, BLOSUM62 conformed less well than the modified ma-
trices to an extreme value distribution. The detailed data ap-
pear in Table S1 in the supplemental material.

The score distributions were used to estimate the statistical
parameters � and � of the distributions as well (3). For FASTA
searches, assuming conformance with the extreme value distri-
bution, � and � are calculated and e values are derived from
the distribution for each search (26). In contrast, standard
BLAST assumes values for these parameters that were derived
from empirical estimates in gapped searches of high-complex-
ity sequences. It is noteworthy that for the BLOSUM62-based
searches of cell wall queries against the randomized cell wall
pseudosequences, the value of � was as much as 106 times
greater than the standard value of 0.0243. This difference is
probably the major source of the inaccuracy of e values and
subsequent low-complexity corruption in low-complexity searches
using BLOSUM62. In contrast, the composition-modified ma-
trices generated score distributions with � values that differed
from the standard by less than fourfold. The � values were all
close to the BLAST-assumed value of 0.24, again with the
exceptions of the BLOSUM62-based cell wall searches against
the low-complexity and low-complexity pseudosequence data-
bases (see Table S1 in the supplemental material).

Another test for conformance is probability plots of the
inverse Poisson distribution P values for alignment scores. Al-
though such plots are often used to compare scores for two
samplings of a population, they can also be used to illustrate
the number of scores at each probability in two distributions
(9). The plots in Fig. S2 show the cumulative fraction of scores
above given index scores for comparisons of the E and gtQ
matrices compared to the distribution in the BLAST-PGP
search of the high-complexity query and database (31). The
plots are linear, as expected for comparable score distribu-
tions.

e values for false hits. In an extreme value distribution, the
mean best e value of false hits should be 1 (26). We therefore
calculated this quantity for each matrix modification in both
BLAST and FASTA searches using high- and low-complexity
queries. In searches with high-complexity queries, all matrices
had mean first false hit scores between 0.41 and 11.7 (see Table
S2 in the supplemental material). Again, E matrices were the
most discriminatory and had the largest e values for false hits.
In contrast, in searches with low-complexity queries, the com-
position-modified matrices far outperformed BLOSUM62.
For BLOSUM62, even with SEG filtering or composition-
modified statistics, the mean e values for the first false hits were
between 10�3 and 10�46. Furthermore, the best-scoring false
hit in a BLOSUM62-based search had an e value of 10�110. In
contrast, the modified matrices generated mean e values of
between 10�2 and 102. Thus, in high-complexity searches, the
E and gtQ modifications produced e values close to 1 for the first
false hit, as expected. For low-complexity sequences, the E and
gtQ modifications produced e values much closer to the ex-
pected value of 1 than in searches with BLOSUM62.

Computational efficiency. In BLAST, the major computa-
tional burden is the time needed to extend the two- to four-
letter words from the query sequence that find similarity to
sequences in the database (4, 5). We therefore measured the

computation times in BLAST and FASTA. BLAST-E and
BLAST-gtQ ran faster than BLAST-B and BLAST-PGP for
low-complexity sequences for both the S. cerevisiae genome
database and the database that consisted of the genome with
randomized sequences (Table 6). The maximum difference was
about a 25-fold speed-up for the BLAST-E search with low-
complexity queries. For high-complexity sequences, E matrices
were slightly more efficient and gtQ matrices were 40% slower
than standard BLAST methods. In contrast, composition-
based matrix modifications had little effect on the scan times
for searches by FASTA (data not shown).

DISCUSSION

There is an acute need for bioinformatic tools that align and
compare low-complexity sequences. Most available programs
merely identify or mask such segments (1, 19, 33, 34). We have
shown that strategies that base alignment scores on the fre-
quency of specific amino acids in the query sequence greatly
improve the reliability and usefulness of BLAST and FASTA
searches for low-complexity query sequences. These E and gtQ
matrix modification methods decreased the scores for common
residues and were highly discriminatory against nonhomolo-
gous sequences. The searches using these matrices identified a
consistent set of paralogs of known yeast wall proteins (Table
4). These proteins share homologous sequence regions and
motifs that have not been identified in BLOSUM62-based
searches (J. Coronado et al., unpublished data). Searches with
composition-modified matrices also improved structural con-
cordance in aligned sequences (Table 3).

The modified matrices yielded alignment scores in BLAST
and FASTA that conformed to the extreme value distribution
(see Table S1 and Fig. S2 in the supplemental material) and
generated e values more accurately than BLOSUM62-based
searches (see Table S2 in the supplemental material) for low-
complexity sequences. In searches with high-complexity que-
ries, the distributions also conformed to the expected extreme
value distribution, but the increased discriminatory power of
the modified matrices decreased sensitivity somewhat (Table
5). This finding is consistent with a previous report that
BLOSUM62 is the most sensitive matrix for searches with
high-complexity sequences (17).

Transitive closure with modified-matrix searches identified
a consistent set of yeast proteins. The transitive closure tests
demonstrated that searches with E or gtQ modified matrices

TABLE 6. Efficiency of modified-matrix BLAST searches

Query set Matrix

Computation time (s)

S. cerevisiae
genome

S. cerevisiae genome
with random

sequences

Cell wall proteins E 3 9
gtQ 8 26
BLOSUM-PGP 60 230
BLOSUM62 55 213

Aravind E 15 43
gtQ 24 80
BLOSUM-PGP 18 56
BLOSUM62 17 55
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reliably identified apparent homologs of cell wall query se-
quences (Table 4, GO annotation and manually curated sets).
In contrast, BLOSUM62-based searches with standard statis-
tics did not close and hit a large fraction of the yeast proteome.
The transitive closure test closed with BLAST-PGP, but the
majority of the hits with e values of �10�3 were not cell
wall-related proteins (Table 4). Indeed, inspection revealed
that most of them were low-complexity sequences in mobile
elements or RNA-processing enzymes.

The BLAST and FASTA transitive closure tests with the
three best-performing composition-based matrices (BLAST
with E or gtQ and FASTA with E, gtQ, or gtQ32) identified 61
apparent homologs of the yeast cell wall proteins with align-
ment e values smaller than 10�3. Of those apparent homologs,
48 were retrieved by all five of these modified-matrix searches;
FASTA-E retrieved only these 48 ORFs. One additional ORF,
Ylr110c, was retrieved by the four other modified-matrix
searches. Nine more ORFs were identified by BLAST-gtQ,
FASTA-gtQ, and FASTA-gtQ32. Based on inspection of the
significant alignments and resistance to low-complexity corrup-
tion, the E and gtQ modifications used in BLAST, or used with
high gap costs in FASTA, define a consistent set of potentially
homologous low-complexity proteins efficiently and accurately
(Table 4; see Table S4 in the supplemental material).

Other matrix modifications. Matrices modified for compo-
sition of both query and target sequences might further in-
crease sensitivity but at the cost of calculating a new matrix for
each HSP. An analysis of reciprocal hits in the transitive clo-
sure test shows that query-based modifications were sufficient
to find all known paralogous pairs (see the supplemental ma-
terial).

In a different approach, Yu and colleagues (6, 36, 37) previ-
ously proposed composition-based modifications of BLOSUM
scoring matrices to do alignments of low-complexity sequences
without SEG filtering. The scoring matrices described previ-
ously (37) are corrected by keeping the total entropy of each
matrix constant, a strategy to maximize sensitivity for queries
of unusual composition. Thus, these modifications would apply
to a different aspect of the low-complexity search and align-
ment problem. The consequences of such matrices on a large
scale have not yet been published.

Structural consequences. Disordered regions of proteins of-
ten include low-complexity sequences. DISORDER, a scoring
matrix specific for disordered regions of structurally well-char-
acterized proteins, improves scores for homologous protein
pairs with 40 to 50% identity (30). The discrimination ability is
similar to that of BLOSUM62, and the increase in sensitivity
appears to be twofold. In contrast, the E and gtQ matrices
increased discrimination for any query sequence, and gtQ
showed a greater sensitivity. The result was better agreement
in predicted secondary structures of the aligned segments.

Summary. We have presented several ways to normalize the
alignment scores and statistical parameters for individual
query sequences (Table 2). Of these, the E and gtQ modifica-
tions support sensitive, discriminating, and accurate search and
scoring statistics for proteins or segments whose amino acid
composition is far outside the Robinson and Robinson amino
acid frequencies originally used to estimate the statistical pa-
rameters of � and �.

The scoring matrix modifications E and gtQ rendered SEG

filtering unnecessary and generated alignment scores that con-
formed to the extreme value distribution, which BLOSUM62-
based searches could not do for these sequences of unusual
composition. The composition-based matrix modifications also
generated score distributions with statistical parameters much
closer to those assumed in gapped BLAST statistics, so the
resultant e values were more accurate than those from
BLOSUM62 and at least as accurate as composition-based
statistics in BLAST-PGP. Therefore, BLAST or FASTA with
the E or gtQ modified matrices showed great resistance to
low-complexity corruption and reliably identified apparent ho-
mologs of these important, low-complexity sequences without
masking out the low-complexity segments. Furthermore, for
these sequences, the efficiency of BLAST was improved, and
the efficiency of FASTA was not significantly changed. For
query sequences containing low-complexity regions, BLAST-
gtQ and FASTA-gtQ32 were the most sensitive search meth-
ods and had good discrimination against nonhomologous se-
quences with similar amino acid compositions. Matrix
modification E with either BLAST or FASTA searches had
maximal discrimination against nonhomologous sequences but
was somewhat less sensitive. The results presented here dem-
onstrate that composition-based matrix modifications discrim-
inate against nonhomologous alignments and therefore make
accurate comparative studies of low-complexity sequences pos-
sible. This accuracy is necessary for phylogenetics and for
structural comparisons.

Another benefit of these matrices will be an analogous
improvement in the accuracy of genomic annotations, which
are often based on functional analogies for homologous se-
quences. For instance, transitive closure identified a set of 48
sequences in S. cerevisiae that are similar to the cell wall pro-
tein queries. Searches through fungal genomes have revealed
that apparent homologs of these proteins are present in other
ascomycetes and basidiomycetes (Coronado et al., unpub-
lished). These homologies in turn imply commonalities in cell
wall structure and function for fungi whose walls are not as well
characterized as those of S. cerevisiae.
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